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Background:
ALDH5A1 is a gene encoding for succinic semialdehyde dehydrogenase (SSADH), an

enzyme responsible for the catabolic break-down of 𝛾-aminobutyric acid (GABA), the major
inhibitory neurotransmitter in the brain. In the absence of SSADH, GABA and its metabolite
𝛾-hydroxybutyrate (GHB) accumulate to pathologic levels in the brain. The ALDH5A1
loss-of-function mutation triggering this harmful accumulation of GABA and GHB is known as
SSADH deficiency (SSADHD), a rare autosomal neurodevelopmental disease characterized by
epilepsy and autistic behaviors for which neither curative nor disease-modifying treatments exist
at the clinical stage.

Recently, the Rotenberg Lab at Boston Children’s Hospital has pioneered an
adeno-associated-virus (AAV) mediated gene replacement therapy which has proven to be
promising at the preclinical stage[1]. AAV gene replacement therapy works by selectively
delivering a viral vector, which includes a wild-type copy of a therapeutic gene and its proper
regulatory elements, through cell-type specific infection. In SSADH deficient mice, treatment is
designed to drive expression of ALDH5A1 in neuronal cells with a viral vector including the
human-recombinant ALDH5A1-transgene and its full-length native promoter[1].

Before moving to clinical testing, it must be clearly determined that treatment is effective
at the preclinical stage. To do so, I will develop a metric to appraise treatment efficacy
systematically and without human bias.

The native exploratory and dwelling behavior in mice is a close analogue for complex
human behavior, which might reflect treatment efficacy. Preliminary data suggests that mutant
mice behavior is distinct from wild-type (normal) littermates, which is amenable to SSADH
restoration across treatment groups (Figure 1). Meanwhile, other metrics such as survival rate
and EEG provide opportunity to cross-validate treatment efficacy in mice.

As such, I propose implementing a machine-learning supervised procedure to quantify
mouse behavior, which I believe is an effective proxy for treatment efficacy. A significant
knowledge gap in the field exists on how to appraise the efficacy of a gene therapy treatment on
SSADHD by an automated, unbiased approach through systematic behavioral analysis. I will
attempt to bridge this gap by performing topological data analysis and higher-order Markovian
modeling of behavioral datasets, which I will obtain from novel machine-learning techniques
(Figure 2).



Machine-Learning Pose Estimation and Behavioral-Motif Analysis:
Recent advances in machine-learning regarding keypoint-tracking algorithms such as

DeepLabCut and motion-sequencing packages like MoSeq have enabled researchers to generate
time-series data of behavioral-motifs without supervision[3].

Using video recordings of treated mice across various experimental conditions, I will first
implement a reinforced-learning-from-human-feedback (RLHF) keypoint-algorithm in
DeepLabCut. DeepLabCut returns continuous keypoint-data, which looks like a time-series of
superimposed skeletons on mice. Using DeepLabCut’s deep-learning inference, the mouse can
be rapidly tracked without significant manual input. Manual analyses have already been
performed, and these will cross validate my novel approach.

Next, I will apply the Keypoint MoSeq package to the keypoint-data from DeepLabCut.
Through MoSeq, an unsupervised machine-learning package, I will extract a string of
time-indexed behavioral patterns. The output of this pose analysis pipeline will be the time-series
behavioral-motif sequence needed to perform my data analysis in the next section (Figure 2).

It is worth noting that the application of MoSeq to tracking-data is a new but
proven-effective practice in the field. A 2023 study used this approach to determine hidden



behavioral-motifs underlying epilepsy, though depth-imaging rather than keypoint-data was
used[4]. I hope to uncover similar insights regarding the underlying behaviors of differential
efficacy in gene therapy.

Higher-Order Markov Chains and Topological Data Analysis:
For each treatment group, we now have time-series strings of behavioral-motifs. I present

two approaches to analyzing this data:

(1) Modeling the behavioral-transition network with a higher-order Markov-chain, and
(2) Performing topological data analysis on a spring-embedded point-cloud.



Firstly, a study found that decision-making processes of mice self-generate
stochasticity[5]. Thus, I decided a Markov chain would be appropriate. However, because
decisions are still informed and do not fully exhibit memorylessness, I will implement a
higher-order Markov chain[6].

Implementing (1) in Python is straightforward. Counting substring-to-substring transition
frequencies by parsing the string, we can construct a transition matrix, where aij represents the
i-to-j transition probability (Figure 3).

Matrix representation allows me to compare behavior across treatment groups
quantitatively. For example, I will compare the steady-state vectors of each matrix by taking the



norm of their differences; higher values suggest stronger divergence between overarching
behaviors. Additionally, I will use Kullback–Leibler divergence to compare steady-states as
probability distributions, for which MatLab code is readily available[7].

Implementing (2) is more complicated. Let each k-length substring be represented as
points in 3-dimensional space. We would like points with higher transition probabilities to be
closer together. Thus, I will apply Tutte’s spring embedding method, where we suppose every
point is connected by spring constants proportional to the transition probabilities[8].

From this behavioral point-cloud, we can measure its persistent homology. A 2021 study
has shown that persistent homology is an effective metric for distinguishing characteristic
behaviors in worms, and I believe this will hold true for mice[9]. Put simply, persistent homology
is an algebraic object which describes how topological invariants of a point-cloud persist over
varying resolutions as it connects itself into manifolds (Figure 3). Persistent homology is a
powerful tool for summarizing the shape of our data, and by analyzing the most persistent
features of the point-cloud topology, we can distinguish the most characteristic behaviors.

Analyzing the topologies of behavioral state-spaces allows for a visually intuitive
representation of our data. For example, suppose the behavioral manifold of one treatment group
resembles a donut and another a pretzel. These tools will potentially serve as very powerful
methods to quantify and infer treatment levels in new mouse data.

Impact and Innovations
Applications of Markovian and topological analysis to behavioral data in mice upon gene

therapy have not been attempted. Establishing novel methodologies is a necessary step towards a
standardized quantitative measure to assess treatment efficacy. We note that similar machine
learning-assisted approaches might be translatable to the clinic, to better understand and analyze
complex human behaviors applicable broadly to autism, epilepsy, and other neurologic
disorders[10].
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